首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
安全科学   3篇
环保管理   12篇
综合类   11篇
基础理论   13篇
污染及防治   11篇
社会与环境   2篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
11.
From a conservation perspective, quantifying potential refugial capacity has been predominantly focused on climate refugia, which is critical for maintaining the persistence of species and ecosystems. However, protection from other stressors, such as human-induced changes in fire and hydrology, that cause habitat loss, degradation, and fragmentation is also necessary to ensure that conservation efforts focused on climate are not undermined by other threats. Thus, conceptual and methodological advances for quantifying potential refugia from multiple anthropogenic stressors are important to support conservation efforts. We devised a new conceptual approach, the domains of refugia, for assessing refugial capacity that identifies areas where exposure to multiple stressors is low. In our framework, patterns of environmental variability (e.g., increased frequency of warm summers), thresholds of resilience, and extent and intensity of stressors are used to identify areas of potential refugia from a suite of ongoing anthropogenic stressors (e.g., changes in fire regime). To demonstrate its utility, we applied the framework to a Southern California landscape. Sites with high refugial capacity (super-refugia sites) had on average 30% fewer extremely warm summers, 20% fewer fire events, 10% less exposure to altered river channels and riparian areas, and 50% fewer recreational trails than the surrounding landscape. Our results suggest that super-refugia sites (∼8200 km2) for some natural communities are underrepresented in the existing protected area network, a finding that can inform efforts to expand protected areas. Our case study highlights how considering exposure to multiple stressors can inform planning and practice to conserve biodiversity in a changing world.  相似文献   
12.
A laboratory-scale reactor system was built and operated to demonstrate the feasibility of catalytically reacting carbon dioxide (CO2) with renewably-generated hydrogen (H2) to produce methane (CH4) according to the Sabatier reaction: CO2 + 4H2  CH4 + 2H2O. A cylindrical reaction vessel packed with a commercial methanation catalyst (Haldor Topsøe PK-7R) was used. Renewable H2 produced by electrolysis of water (from solar- and wind-generated electricity) was fed into the reactor along with a custom blend of 2% CO2 in N2, meant to represent a synthetic exhaust mixture. Reaction conditions of temperature, flow rates, and gas mixing ratios were varied to determine optimum performance. The extent of reaction was monitored by real-time measurement of CO2 and CH4. Maximum conversion of CO2 occurred at 300–350 °C. Approximately 60% conversion of CO2 was realized at a space velocity of about 10,000 h?1 with a molar ratio of H2/CO2 of 4/1. Somewhat higher total CO2 conversion was possible by increasing the H2/CO2 ratio, but the most efficient use of available H2 occurs at a lower H2/CO2 ratio.  相似文献   
13.
ABSTRACT

Research was performed to demonstrate the removal of carbon tetrachloride (CT) using compost biofilters operated under methanogenic conditions. Biofilters were operated at an empty-bed residence time of 2.8 minutes using nitrogen as the atmosphere. Hydrogen and carbon dioxide were supplied as an electron donor and carbon source, respectively, during acclimation of the bed medium microbes. Once methanogenesis was demonstrated, CT flow to the biofilter was established. Biofilters were operated over a CT concentration range from 20 to 700 ppbv for 6 months. Bed medium microbes were able to remove up to 75% of the inlet CT. At excessively high CT concentrations (>500 ppmv), methane production and hydrogen utilization by the bed medium microbes appeared to be inhibited. CT removal by the biofilter decreased when the hydrogen supply was removed from the biofilter inlet, indicating that hydrogen acted as the electron donor for reductive dechlorination. The removal efficiency and relatively low empty bed residence times demonstrated by these laboratory-scale biofilters indicate that anaerobic biofiltration of CT may be a feasible full-scale process.  相似文献   
14.
Pfennig DW  Rice AM  Martin RA 《Ecology》2006,87(3):769-779
We investigated the roles of resource availability and phenotypic plasticity in promoting ecological character displacement (i.e., trait evolution stemming from resource competition between species). Because ecological character displacement generates new populations that differ in resource use, this process should only occur when exploitable resources are available. We tested this hypothesis in two species of spadefoot toads (Spea bombifrons and S. multiplicata) whose tadpoles use phenotypic plasticity to develop into either an omnivore morph, which specializes on detritus, or a physically distinctive carnivore morph, which specializes on shrimp. Both species grow best on shrimp, but when reared together, S. bombifrons outcompetes S. multiplicata for shrimp and S. multiplicata outcompetes S. bombifrons for detritus. We found that when each species occurred alone in the field, they produced similar proportions of omnivores and carnivores. When the two species occurred together, however, they underwent ecological character displacement in larval development, with S. multiplicata producing mostly omnivores, and S. bombifrons producing mostly carnivores. We combined observations of natural populations with experiments to evaluate whether such character displacement was only possible when both shrimp and detritus were relatively abundant. Mixed-species ponds contained abundant detritus and shrimp, in contrast with nearby pure-species ponds, which were deficient in one resource. Experiments revealed that S. multiplicata competed poorly when detritus was rare and that S. bombifrons competed poorly when shrimp was rare. In nature, when one of these two resources was scarce, one species was missing, perhaps through competitive exclusion by the species that was the superior competitor for the remaining resource. Thus, ecological character displacement and, therefore, coexistence of close competitors, was only possible when diverse resources were available. Finally, even if exploitable resources are available, character displacement is not guaranteed to transpire if species cannot utilize such resources expeditiously. Phenotypic plasticity provides a general and important mechanism for facilitating resource partitioning. Thus, by facilitating shifts in resource use, phenotypic plasticity and ecological opportunity may often interact to promote divergence and coexistence of competitors.  相似文献   
15.
Elevated carbon dioxide (CO2) concentrations in the atmosphere can stimulate plant growth and yield, whereas ground-level ozone (O3) concentrations cause the opposite effect in many areas of the world. Recent experiments show that elevated CO2 can protect some plants from O3 stress, but this has not been tested for most crop species. Our objective was to determine if elevated CO2 protects Irish potato (Solanum tuberosum L.) from foliar injury and suppression of growth and yield caused by O3. An O3-resistant cultivar (Superior) and an O3-sensitive cultivar (Dark Red Norland) were exposed from within 10 d after emergence to maturity to mixtures of three CO2 and three O3 treatments in open-top field chambers. The three CO2 treatments were ambient (370 microL L(-1)) and two treatments with CO2 added to ambient CO2 for 24 h d(-1) (540 and 715 microL L(-1)). The O3 treatments were charcoal-filtered air (15 nL L(-1)), nonfiltered air (45 nL L(-1)), and nonfiltered air with O3 added for 12 h d(-1) (80 nL L(-1)). Elevated O3 and CO2 caused extensive foliar injury of Dark Red Norland, but caused only slight injury of Superior. Elevated CO2 increased growth and tuber yield of both cultivars, whereas elevated O3 generally suppressed growth and yield, mainly of Dark Red Norland. Elevated CO2 appeared to protect Dark Red Norland from O3-induced suppression of shoot, root, and tuber weight as measured at midseason but did not protect either cultivar from O3 stress at the final harvest. The results further illustrate the difficulty in predicting effects of O3 + CO2 mixtures based on the effects of the individual gases.  相似文献   
16.
17.
Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.  相似文献   
18.
19.
Abstract: The determination of sediment and nutrient loads is typically based on the collection and analysis of grab samples. The frequency and regularity of traditional sampling may not provide representation of constituent loading, particularly in systems with flashy hydrology. At two sites in the Little Bear River, Utah, continuous, high‐frequency turbidity was used with surrogate relationships to generate estimates of total phosphorus and total suspended solids concentrations, which were paired with discharge to estimate annual loads. The high frequency records were randomly subsampled to represent hourly, daily, weekly, and monthly sampling frequencies and to examine the effects of timing, and resulting annual load estimates were compared to the reference loads. Higher frequency sampling resulted in load estimates that better approximated the reference loads. The degree of bias was greater at the more hydrologically responsive site in the upper watershed, which required a higher sampling frequency than the lower watershed site to achieve the same level of accuracy in estimating the reference load. The hour of day and day of week of sampling impacted load estimation, depending on site and hydrologic conditions. The effects of sampling frequency on the determination of compliance with a water quality criterion were also examined. These techniques can be helpful in determining necessary sampling frequency to meet the objectives of a water quality monitoring program.  相似文献   
20.
Integrating social and hydrologic sciences for understanding water systems is challenged by data management complexities. Contemporary mandates for open science and data sharing necessitate better understanding of the implications of social science data types. In the context of an interdisciplinary water research program that endeavors to integrate and share social science and biophysical data, we highlight the array of data types and issues associated with social water science. We present a multi‐dimensional classification of social water science data that provides insight into data management considerations for each data type. Recommendations for cyberinfrastructure, planning, and policy are offered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号